OpenAI Chat with Data Streaming in C#
This sample demonstrates how to use the OpenAI Chat API incorporating data streaming from Azure AI Search in a C# console application.
Program.cs
OpenAIChatCompletionsWithDataStreamingClass.cs
How to generate this sample
AI - Azure AI CLI, Version 1.0.0
Copyright (c) 2024 Microsoft Corporation. All Rights Reserved.
This PUBLIC PREVIEW version may change at any time.
See: https://aka.ms/azure-ai-cli-public-preview
Generating 'openai-chat-streaming-with-data' in 'openai-chat-streaming-with-data-cs' (3 files)...
OpenAIChatCompletionsWithDataStreaming.csproj
OpenAIChatCompletionsWithDataStreamingClass.cs
Program.cs
Generating 'openai-chat-streaming-with-data' in 'openai-chat-streaming-with-data-cs' (3 files)... DONE!
Program.cs
STEP 1: Read the configuration settings from environment variables.
var openAIAPIKey = Environment.GetEnvironmentVariable("AZURE_OPENAI_API_KEY") ?? "<insert your OpenAI API key here>";
var openAIApiVersion = Environment.GetEnvironmentVariable("AZURE_OPENAI_API_VERSION") ?? "<insert your open api version here>";
var openAIEndpoint = Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT") ?? "<insert your OpenAI endpoint here>";
var openAIChatDeploymentName = Environment.GetEnvironmentVariable("AZURE_OPENAI_CHAT_DEPLOYMENT") ?? "<insert your OpenAI chat deployment name here>";
var openAISystemPrompt = Environment.GetEnvironmentVariable("AZURE_OPENAI_SYSTEM_PROMPT") ?? "You are a helpful AI assistant.";
var openAIEmbeddingsDeploymentName = Environment.GetEnvironmentVariable("AZURE_OPENAI_EMBEDDING_DEPLOYMENT") ?? "<insert your OpenAI embeddings deployment name here>";
var openAIEmbeddingsEndpoint = $"{openAIEndpoint.Trim('/')}/openai/deployments/{openAIEmbeddingsDeploymentName}/embeddings?api-version={openAIApiVersion}";
var searchApiKey = Environment.GetEnvironmentVariable("AZURE_AI_SEARCH_KEY") ?? "<insert your search api key here>";
var searchEndpoint = Environment.GetEnvironmentVariable("AZURE_AI_SEARCH_ENDPOINT") ?? "<insert your search endpoint here>";
var searchIndexName = Environment.GetEnvironmentVariable("AZURE_AI_SEARCH_INDEX_NAME") ?? "<insert your search index name here>";
STEP 2: Initialize the helper class with the configuration settings.
var chat = new OpenAIChatCompletionsWithDataStreamingClass(openAIEndpoint, openAIAPIKey, openAIChatDeploymentName, openAISystemPrompt, searchEndpoint, searchApiKey, searchIndexName, openAIEmbeddingsEndpoint);
STEP 3: Obtain user input, use the helper class to get the assistant's response, and display responses as they are received.
while (true)
{
Console.Write("User: ");
var userPrompt = Console.ReadLine();
if (string.IsNullOrEmpty(userPrompt) || userPrompt == "exit") break;
Console.Write("\nAssistant: ");
var response = await chat.GetChatCompletionsStreamingAsync(userPrompt, update => {
var text = string.Join("", update.ContentUpdate
.Where(x => x.Kind == ChatMessageContentPartKind.Text)
.Select(x => x.Text)
.ToList());
Console.Write(text);
});
Console.WriteLine("\n");
}
OpenAIChatCompletionsWithDataStreamingClass.cs
STEP 1: Create the client and initialize chat message history with a system message and set up data sources.
public OpenAIChatCompletionsWithDataStreamingClass(string openAIEndpoint, string openAIAPIKey, string openAIChatDeploymentName, string openAISystemPrompt, string searchEndpoint, string searchApiKey, string searchIndexName, string embeddingsEndpoint)
{
_openAISystemPrompt = openAISystemPrompt;
_client = string.IsNullOrEmpty(openAIAPIKey)
? new AzureOpenAIClient(new Uri(openAIEndpoint), new DefaultAzureCredential())
: new AzureOpenAIClient(new Uri(openAIEndpoint), new AzureKeyCredential(openAIAPIKey));
_chatClient = _client.GetChatClient(openAIChatDeploymentName);
_messages = new List<ChatMessage>();
_options = new();
_options.AddDataSource(new AzureSearchChatDataSource()
{
Authentication = DataSourceAuthentication.FromApiKey(searchApiKey),
Endpoint = new Uri(searchEndpoint),
IndexName = searchIndexName,
QueryType = DataSourceQueryType.VectorSimpleHybrid, // Use VectorSimpleHybrid to get the best vector and keyword search query types.
VectorizationSource = DataSourceVectorizer.FromEndpoint(new Uri(embeddingsEndpoint), DataSourceAuthentication.FromApiKey(openAIAPIKey))
});
ClearConversation();
}
public void ClearConversation()
{
_messages.Clear();
_messages.Add(ChatMessage.CreateSystemMessage(_openAISystemPrompt));
}
STEP 2: When the user provides input, add the user message to the chat message history.
public async Task<string> GetChatCompletionsStreamingAsync(string userPrompt, Action<StreamingChatCompletionUpdate>? callback = null)
{
_messages.Add(ChatMessage.CreateUserMessage(userPrompt));
STEP 3: Send the chat message history to the streaming OpenAI Chat API and process each update.
var responseContent = string.Empty;
var response = _chatClient.CompleteChatStreamingAsync(_messages, _options);
await foreach (var update in response)
{
var content = string.Join("", update.ContentUpdate
.Where(x => x.Kind == ChatMessageContentPartKind.Text)
.Select(x => x.Text)
.ToList());
if (update.FinishReason == ChatFinishReason.ContentFilter)
{
content = $"{content}\nWARNING: Content filtered!";
}
STEP 4: For each non-empty update, accumulate the response, and invoke the callback for the update.
if (string.IsNullOrEmpty(content)) continue;
responseContent += content;
if (callback != null) callback(update);
}
STEP 5: Finally, add the assistant's response to the chat message history, and return response.