OpenAI Chat in JavaScript
This page was automatically generated by AI; not yet reviewed for accuracy...
The content and code samples on this page were generated by using the ai
CLI with customized prompts in this repository.
It's cool, but, it's experimental. 😁
Please review the content and code before using it in your application.
This sample demonstrates how to use the OpenAI Chat API in a JavaScript console application.
Main.js
OpenAIChatCompletionsClass.js
How to generate this sample
AI - Azure AI CLI, Version 1.0.0
Copyright (c) 2024 Microsoft Corporation. All Rights Reserved.
This PUBLIC PREVIEW version may change at any time.
See: https://aka.ms/azure-ai-cli-public-preview
Generating 'openai-chat' in 'openai-chat-js' (3 files)...
Main.js
OpenAIChatCompletionsClass.js
ReadLineWrapper.js
Generating 'openai-chat' in 'openai-chat-js' (3 files)... DONE!
Main.js
STEP 1: Read the configuration settings from environment variables.
const AZURE_OPENAI_SYSTEM_PROMPT = process.env.AZURE_OPENAI_SYSTEM_PROMPT ?? "You are a helpful AI assistant.";
const AZURE_OPENAI_API_KEY = process.env.AZURE_OPENAI_API_KEY ?? "<insert your Azure OpenAI API key here>";
const AZURE_OPENAI_API_VERSION = process.env.AZURE_OPENAI_API_VERSION ?? "<insert your Azure OpenAI API version here>";
const AZURE_OPENAI_CHAT_DEPLOYMENT = process.env.AZURE_OPENAI_CHAT_DEPLOYMENT ?? "<insert your Azure OpenAI chat deployment name here>";
const AZURE_OPENAI_ENDPOINT = process.env.AZURE_OPENAI_ENDPOINT ?? "<insert your Azure OpenAI endpoint here>";
const AZURE_OPENAI_BASE_URL = `${AZURE_OPENAI_ENDPOINT.replace(/\/+$/, '')}/openai/deployments/${AZURE_OPENAI_CHAT_DEPLOYMENT}`;
STEP 2: Initialize the helper class with the configuration settings.
const openai = new OpenAI({
apiKey: AZURE_OPENAI_API_KEY,
baseURL: AZURE_OPENAI_BASE_URL,
defaultQuery: { 'api-version': AZURE_OPENAI_API_VERSION },
defaultHeaders: { 'api-key': AZURE_OPENAI_API_KEY },
});
const chat = new OpenAIChatCompletionsClass(AZURE_OPENAI_CHAT_DEPLOYMENT, AZURE_OPENAI_SYSTEM_PROMPT, openai);
STEP 3: Check if the required environment variables are set.
const azureOk =
AZURE_OPENAI_API_KEY != null && !AZURE_OPENAI_API_KEY.startsWith('<insert') &&
AZURE_OPENAI_API_VERSION != null && !AZURE_OPENAI_API_VERSION.startsWith('<insert') &&
AZURE_OPENAI_CHAT_DEPLOYMENT != null && !AZURE_OPENAI_CHAT_DEPLOYMENT.startsWith('<insert') &&
AZURE_OPENAI_ENDPOINT != null && !AZURE_OPENAI_ENDPOINT.startsWith('<insert');
const ok = azureOk &&
AZURE_OPENAI_SYSTEM_PROMPT != null && !AZURE_OPENAI_SYSTEM_PROMPT.startsWith('<insert');
if (!ok) {
console.error(
'To use Azure OpenAI, set the following environment variables:\n' +
'\n AZURE_OPENAI_SYSTEM_PROMPT' +
'\n AZURE_OPENAI_API_KEY' +
'\n AZURE_OPENAI_API_VERSION' +
'\n AZURE_OPENAI_CHAT_DEPLOYMENT' +
'\n AZURE_OPENAI_ENDPOINT'
);
console.error(
'\nYou can easily do that using the Azure AI CLI by doing one of the following:\n' +
'\n ai init' +
'\n ai dev shell' +
'\n node main.js' +
'\n' +
'\n or' +
'\n' +
'\n ai init' +
'\n ai dev shell --run "node main.js"'
);
process.exit(1);
}
STEP 4: Create the OpenAI client.
const openai = new OpenAI({
apiKey: AZURE_OPENAI_API_KEY,
baseURL: AZURE_OPENAI_BASE_URL,
defaultQuery: { 'api-version': AZURE_OPENAI_API_VERSION },
defaultHeaders: { 'api-key': AZURE_OPENAI_API_KEY },
});
STEP 5: Create the streaming chat completions helper.
const chat = new OpenAIChatCompletionsClass(AZURE_OPENAI_CHAT_DEPLOYMENT, AZURE_OPENAI_SYSTEM_PROMPT, openai);
STEP 6: Get user input, use the helper class to get the assistant's response, and display responses as they are received.
while (true) {
const input = await readline.question('User: ');
if (input === 'exit' || input === '') break;
const response = await chat.getResponse(input);
process.stdout.write(`\nAssistant: ${response}\n\n`);
}
OpenAIChatCompletionsClass.js
STEP 1: Create the client and initialize chat message history with a system message.
constructor(openAIModelOrDeploymentName, systemPrompt, openai) {
this.systemPrompt = systemPrompt;
this.openAIModelOrDeploymentName = openAIModelOrDeploymentName;
this.openai = openai;
this.clearConversation();
}
clearConversation() {
this.messages = [
{ role: 'system', content: this.systemPrompt }
];
}
STEP 2: When the user provides input, add the user message to the chat message history.
async getResponse(userInput) {
this.messages.push({ role: 'user', content: userInput });
STEP 3: Send the chat message history to the OpenAI Chat API and process each update.
const completion = await this.openai.chat.completions.create({
model: this.openAIModelOrDeploymentName,
messages: this.messages,
});
const choice = completion.choices[0];
let content = choice.message?.content;
if (choice.finish_reason === 'length') {
content = `${content}\nERROR: Exceeded token limit!`;
}
STEP 4: For each non-empty update, accumulate the response, and invoke the callback for the update.