OpenAI Assistants with Function Calling in C#
This sample demonstrates how to use OpenAI Assistants with function calling in a C# console application.
Program.cs
FunctionFactory.cs
HelperFunctionDescriptionAttribute.cs
HelperFunctionParameterDescriptionAttribute.cs
OpenAIAssistantsCustomFunctions.cs
OpenAIAssistantsFunctionsStreamingClass.cs
How to generate this sample
AI - Azure AI CLI, Version 1.0.0
Copyright (c) 2024 Microsoft Corporation. All Rights Reserved.
This PUBLIC PREVIEW version may change at any time.
See: https://aka.ms/azure-ai-cli-public-preview
Generating 'openai-asst-streaming-with-functions' in 'openai-asst-streaming-with-functions-cs' (7 files)...
FunctionFactory.cs
HelperFunctionDescriptionAttribute.cs
HelperFunctionParameterDescriptionAttribute.cs
OpenAIAssistantsCustomFunctions.cs
OpenAIAssistantsFunctionsStreamingClass.cs
Program.cs
Generating 'openai-asst-streaming-with-functions' in 'openai-asst-streaming-with-functions-cs' (7 files)... DONE!
Program.cs
STEP 1: Read the configuration settings from environment variables.
var assistantId = Environment.GetEnvironmentVariable("ASSISTANT_ID") ?? "<insert your OpenAI assistant ID here>";
var threadId = args.Length > 0 ? args[0] : null;
// Validate environment variables
var openAIAPIKey = Environment.GetEnvironmentVariable("AZURE_OPENAI_API_KEY") ?? "<insert your Azure OpenAI API key here>";
var openAIEndpoint = Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT") ?? "<insert your Azure OpenAI endpoint here>";
STEP 2: Validate the environment variables.
if (string.IsNullOrEmpty(openAIAPIKey) || openAIAPIKey.StartsWith("<insert") ||
string.IsNullOrEmpty(openAIEndpoint) || openAIEndpoint.StartsWith("<insert") ||
string.IsNullOrEmpty(assistantId) || assistantId.StartsWith("<insert"))
{
Console.WriteLine("To use Azure OpenAI, set the following environment variables:");
Console.WriteLine(" ASSISTANT_ID\n AZURE_OPENAI_API_KEY\n AZURE_OPENAI_ENDPOINT");
Environment.Exit(1);
}
STEP 3: Initialize OpenAI Client.
var client = string.IsNullOrEmpty(openAIAPIKey)
? new AzureOpenAIClient(new Uri(openAIEndpoint), new DefaultAzureCredential())
: new AzureOpenAIClient(new Uri(openAIEndpoint), new AzureKeyCredential(openAIAPIKey));
STEP 4: Register custom functions.
var factory = new FunctionFactory();
factory.AddFunctions(typeof(OpenAIChatCompletionsCustomFunctions));
STEP 5: Initialize the helper class with the OpenAI client, assistant ID, and function factory.
var assistant = new OpenAIAssistantsFunctionsStreamingClass(client, assistantId, factory);
STEP 6: Create or retrieve a thread, and get existing messages if a thread ID is provided.
if (string.IsNullOrEmpty(threadId))
{
await assistant.CreateThreadAsync();
}
else
{
await assistant.RetrieveThreadAsync(threadId);
await assistant.GetThreadMessagesAsync((role, content) =>
{
Console.WriteLine($"{char.ToUpper(role[0]) + role.Substring(1)}: {content}\n");
});
}
STEP 7: Obtain user input, use the helper class to get the assistant's response, and display responses as they are received.
while (true)
{
Console.Write("User: ");
var userPrompt = Console.ReadLine();
if (string.IsNullOrEmpty(userPrompt) || userPrompt == "exit") break;
Console.Write("\nAssistant: ");
await assistant.GetResponseAsync(userPrompt, content => {
Console.Write(content);
});
}
Console.WriteLine($"Bye! (ThreadId: {assistant.Thread?.Id})");
OpenAIAssistantsFunctionsStreamingClass.cs
STEP 1: Initialize the helper class using the OpenAI client, assistant ID, and function factory.
public OpenAIAssistantsFunctionsStreamingClass(OpenAIClient client, string assistantId, FunctionFactory factory)
{
_assistantClient = client.GetAssistantClient();
_assistantId = assistantId;
_functionFactory = factory;
STEP 2: Update the run options with the available tool definitions.
_runOptions= new RunCreationOptions();
foreach (var tool in _functionFactory.GetToolDefinitions())
{
_runOptions.ToolsOverride.Add(tool);
}
}
STEP 3: Create or retrieve thread.
public async Task CreateThreadAsync()
{
var result = await _assistantClient.CreateThreadAsync();
Thread = result.Value;
}
public async Task RetrieveThreadAsync(string threadId)
{
var result = await _assistantClient.GetThreadAsync(threadId);
Thread = result.Value;
}
STEP 4: Get existing messages from the thread and invoke the callback for each.
public async Task GetThreadMessagesAsync(Action<string, string> callback)
{
var options = new MessageCollectionOptions() { Order = ListOrder.OldestFirst };
await foreach (var message in _assistantClient.GetMessagesAsync(Thread, options).GetAllValuesAsync())
{
var content = string.Join("", message.Content.Select(c => c.Text));
var role = message.Role == MessageRole.User ? "user" : "assistant";
callback(role, content);
}
}
STEP 5: When the user provides input, add the user message to the thread and create a new streaming run with the run options containing the tool definitions.
public async Task GetResponseAsync(string userInput, Action<string> callback)
{
await _assistantClient.CreateMessageAsync(Thread, MessageRole.User, [ userInput ]);
var assistant = await _assistantClient.GetAssistantAsync(_assistantId);
var stream = _assistantClient.CreateRunStreamingAsync(Thread, assistant.Value, _runOptions);
STEP 6: Process the streaming updates, invoking the callback for each content update.
ThreadRun? run = null;
List<ToolOutput> toolOutputs = [];
do
{
await foreach (var update in stream)
{
if (update is MessageContentUpdate contentUpdate)
{
callback(contentUpdate.Text);
}
STEP 7: If the update is a required action, try calling the requested function, and cache the tool outputs
else if (update is RequiredActionUpdate requiredActionUpdate)
{
if (_functionFactory.TryCallFunction(requiredActionUpdate.FunctionName, requiredActionUpdate.FunctionArguments, out var result))
{
callback($"\rassistant-function: {requiredActionUpdate.FunctionName}({requiredActionUpdate.FunctionArguments}) => {result}\n");
callback("\nAssistant: ");
toolOutputs.Add(new ToolOutput(requiredActionUpdate.ToolCallId, result));
}
}
if (update is RunUpdate runUpdate)
{
run = runUpdate;
}
if (run?.Status.IsTerminal == true)
{
callback("\n\n");
}
}
STEP 7: After processing all the updates, submit the tool outputs to the run if there are any.