OpenAI Assistants with Code Interpreter in Python
This page was automatically generated by AI; not yet reviewed for accuracy...
The content and code samples on this page were generated by using the ai
CLI with customized prompts in this repository.
It's cool, but, it's experimental. 😁
Please review the content and code before using it in your application.
This sample demonstrates how to use the OpenAI Assistants API with a code interpreter in a Python console application.
main.py
openai_assistants_code_interpreter_streaming.py
How to generate this sample
AI - Azure AI CLI, Version 1.0.0
Copyright (c) 2024 Microsoft Corporation. All Rights Reserved.
This PUBLIC PREVIEW version may change at any time.
See: https://aka.ms/azure-ai-cli-public-preview
Generating 'openai-asst-streaming-with-code' in 'openai-asst-streaming-with-code-py' (3 files)...
main.py
openai_assistants_code_interpreter_streaming.py
requirements.txt
Generating 'openai-asst-streaming-with-code' in 'openai-asst-streaming-with-code-py' (3 files)... DONE!
main.py
STEP 1: Import required libraries and initialize variables.
import os
import sys
from openai import OpenAI
from openai_assistants_code_interpreter_streaming import OpenAIAssistantsCodeInterpreterStreamingClass
STEP 2: Define the main function and read environment variables.
def main():
ASSISTANT_ID = os.getenv('ASSISTANT_ID') or "<insert your OpenAI assistant ID here>"
threadId = sys.argv[1] if len(sys.argv) > 1 else None
AZURE_OPENAI_API_KEY = os.getenv('AZURE_OPENAI_API_KEY', '<insert your Azure OpenAI API key here>')
AZURE_OPENAI_API_VERSION = os.getenv('AZURE_OPENAI_API_VERSION', '<insert your Azure OpenAI API version here>')
AZURE_OPENAI_ENDPOINT = os.getenv('AZURE_OPENAI_ENDPOINT', '<insert your Azure OpenAI endpoint here>')
AZURE_OPENAI_BASE_URL = f'{AZURE_OPENAI_ENDPOINT.rstrip("/")}/openai'
STEP 3: Validate required environment variables.
ok = \
ASSISTANT_ID != None and not ASSISTANT_ID.startswith('<insert') and \
AZURE_OPENAI_API_KEY != None and not AZURE_OPENAI_API_KEY.startswith('<insert') and \
AZURE_OPENAI_API_VERSION != None and not AZURE_OPENAI_API_VERSION.startswith('<insert') and \
AZURE_OPENAI_ENDPOINT != None and not AZURE_OPENAI_ENDPOINT.startswith('<insert')
if not ok:
print('To use Azure OpenAI, set the following environment variables:\n' +
'\n ASSISTANT_ID' +
'\n AZURE_OPENAI_API_KEY' +
'\n AZURE_OPENAI_API_VERSION' +
'\n AZURE_OPENAI_ENDPOINT')
print('\nYou can easily do that using the Azure AI CLI by doing one of the following:\n' +
'\n ai init' +
'\n ai dev shell' +
'\n python main.py' +
'\n' +
'\n or' +
'\n' +
'\n ai init' +
'\n ai dev shell --run "python main.py"')
os._exit(1)
STEP 4: Create the OpenAI client and assistant instance.
openai = OpenAI(
api_key = AZURE_OPENAI_API_KEY,
base_url = AZURE_OPENAI_BASE_URL,
default_query= { 'api-version': AZURE_OPENAI_API_VERSION },
default_headers = { 'api-key': AZURE_OPENAI_API_KEY }
)
assistant = OpenAIAssistantsCodeInterpreterStreamingClass(ASSISTANT_ID, openai)
STEP 5: Retrieve or create a thread and display messages.
if threadId is None:
assistant.create_thread()
else:
assistant.retrieve_thread(threadId)
assistant.get_thread_messages(lambda role, content: print(f'{role.capitalize()}: {content}', end=''))
STEP 6: Loop to get user input and display assistant's response.
while True:
user_input = input('User: ')
if user_input == 'exit' or user_input == '':
break
print('\nAssistant: ', end='')
assistant.get_response(user_input, lambda content: print(content, end=''))
print('\n')
print(f"Bye! (threadId: {assistant.thread.id})")
if __name__ == '__main__':
try:
main()
except EOFError:
pass
except Exception as e:
print(f"The sample encountered an error: {e}")
sys.exit(1)
openai_assistants_code_interpreter_streaming.py
STEP 1: Import required libraries and define the event handler class.
from typing_extensions import override
from openai import AssistantEventHandler
class EventHandler(AssistantEventHandler):
def __init__(self, openai, callback):
super().__init__()
self.openai = openai
self.callback = callback
STEP 2: Override on_text_delta method to handle text delta events.
@override
def on_text_delta(self, delta, snapshot):
self.callback(delta.value)
STEP 3: Override on_tool_call_created method to handle tool call creation events.
def on_tool_call_created(self, tool_call):
if tool_call.type == 'code_interpreter':
print('\n\nassistant-code:\n', end='', flush=True)
STEP 4: Override on_tool_call_delta method to handle tool call delta events.
def on_tool_call_delta(self, delta, snapshot):
if delta.type == 'code_interpreter':
if delta.code_interpreter.input:
print(delta.code_interpreter.input, end='', flush=True)
if delta.code_interpreter.outputs:
print(f'\n\nassistant-output:', end='', flush=True)
for output in delta.code_interpreter.outputs:
if output.type == 'logs':
print(f'\n{output.logs}', flush=True)
STEP 5: Override on_event method to handle other events.
@override
def on_event(self, event):
if event.event == 'thread.run.failed':
print(event)
raise Exception('Run failed')
super().on_event(event)
STEP 6: Define the assistant class and initialize it.
class OpenAIAssistantsCodeInterpreterStreamingClass:
def __init__(self, assistant_id, openai):
self.assistant_id = assistant_id
self.thread = None
self.openai = openai
STEP 7: Define methods to create and retrieve threads.
def create_thread(self):
self.thread = self.openai.beta.threads.create()
return self.thread
def retrieve_thread(self, thread_id):
self.thread = self.openai.beta.threads.retrieve(thread_id)
return self.thread
STEP 8: Define method to get thread messages and execute callback.
def get_thread_messages(self, callback):
messages = self.openai.beta.threads.messages.list(self.thread.id)
messages.data.reverse()
for message in messages.data:
content = ''.join([item.text.value for item in message.content]) + '\n\n'
callback(message.role, content)
STEP 9: Define method to get assistant response and handle stream events.
def get_response(self, user_input, callback) -> None:
if self.thread == None:
self.create_thread()
message = self.openai.beta.threads.messages.create(
thread_id=self.thread.id,
role="user",
content=user_input,
)
with self.openai.beta.threads.runs.stream(
thread_id=self.thread.id,
assistant_id=self.assistant_id,
event_handler=EventHandler(self.openai, callback)
) as stream:
stream.until_done()